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Abstract. On the basis of graded RTT formalism, the defining relation of the super-Yangian
Y (gl(1|1)) is derived and its oscillator realization is constructed.

YangianY (g) of a simple Lie algebrag, first introduced by Drinfeld [1], is a deformation
of the universal enveloping algebraU(g[t ]) of a current algebrag[t ]. It is a kind of Hopf
algebra and the tensor products of its finite-dimensional representations produce rational
solutions of the quantum Yang–Baxter equation (QYBE).

In the last decade, Yangians associated with simple Lie algebras have been systematically
studied both in mathematics and physics [2], and have many applications in such
theoretical physics as quantum field theory and statistical mechanics. Yangian structure
is the underlying symmetry of many types of integrable models. For example, the one-
dimensional Hubbard model on the infinite chain [3], the Haldane–Shastry model [4] and the
Polychronakos–Frahm model [5] have Yangian symmetry; in the massive two-dimensional
quantum field theory, an infinite-dimensional symmetry generated by non-local conserved
currents is connected to the Yangian [6].

As generalizations of Yangians of simple Lie algebras, the Yangians associated with the
simple Lie superalgebra, which we will call super-Yangian in this paper, also need to be
studied. Actually, some structural features of super-Yangian were investigated by Nazarov
[7] and Zhang [8, 9]. In [7], the quantum determinant of the super-YangianY (gl(m|n)) is
described, while in [8, 9] the super-YangianYq(gl(m|n)) associated with the Perk–Schultz
R matrix is constructed, its structural properties and the relationship between its central
elements and the Casimir operators of quantum supergroupUq(gl(m|n)) are discussed,
in particular, the classification of the finite-dimensional irreducible representations of the
super-YangianY (gl(1|1)) andY (gl(m|n)) is given.

In this paper, on the basis of the graded RTT formalism, we derive the defining
relations of the super-Yangian for the Lie superalgebragl(1|1) and give its oscillator
realization. First, we briefly review the graded RTT formalism and the corresponding
graded Yang–Baxter equation (GYBE). Then, we give the algebraic relation that super-
YangianY (gl(1|1)) satisfies and construct its oscillator realization. Finally, we make some
remarks and discussions.
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In the supersymmetric case, space is graded and the tensor product has the following
property

(A⊗ B)(C ⊗D) = (−1)p(B)p(C)AC ⊗ BD (1)

where p(A) denotes the degree ofA. Now the graded RTT relation with the spectral
parameters takes the form [10, 11]

R12(u− v)T1(u)η12T2(v)η12 = η12T2(v)η12T1(u)R12(u− v) (2a)

whereT1(u) = T (u) ⊗ 1 andT2(u) = 1⊗ T (u) and (η12)ab,cd = (−1)p(a)p(b)δacδbd and
GYBE with spectral parameters reads as [10, 11]

η12R12(u)η13R13(u+ v)η23R23(v) = η23R23(v)η13R13(u+ v)η12R12(u). (3a)

Considering the charge conservation conditions for theRab,cd , i.e.

Rab,cd = 0 unlessa + b = c + d (4)

we can write equations (2a) and (3a) in the component forms as follows

(−1)p(e)(p(d)+p(f ))R12(u− v)ab,cdT (u)ceT (v)df
= (−1)p(a)(p(d)+p(b))T (v)beT (u)adR12(u− v)cd,ef (2b)

(−1)p(d)(p(b)+p(e))R(u)ab,cdR(u+ v)ce,f hR(v)dh,ij
= (−1)p(d)(p(h)+p(j))R(v)be,dhR(u+ v)ah,cjR(u)cd,f i (3b)

where the repeated indices are understood to take summation. Note that, in equations (2)
and (3) the grading property is taken into account by introducing the factorη12. If we set
η = 1, then equations (2) and (3) reduce to the usual RTT relation and YBE respectively.

It is well known that

R12(u) = u+ P12 (5)

satisfies GYBE (3), where

P12 = η12P12 (6)

P stands for the usual permutation operator, i.e.P(u⊗v) = v⊗u. Substituting equation (5)
into equation (2) and introducing the notation

[T (u)ab, T (v)cd} = T (u)abT (v)cd − (−1)(p(a)+p(b))(p(c)+p(d))T (v)cdT (u)ab (7)

we obtain the following relations:

(u− v)[T (u)ab, T (v)cd} + (−1)p(a)p(c)+p(a)p(b)+p(b)p(c)(T (u)cbT (v)ad − T (v)cbT (u)ad)
= 0. (8)

Let

T (u)ab =
∞∑
n=0

u−nT (n)ab (9)

then from equation (8), we have

[T (0)ab , T
(n)
cd } = 0 (10)

[T (n+1)
ab , T

(m)
cd } − [T (n)ab , T

(m+1)
cd } + (−1)p(a)p(c)+p(a)p(b)+p(b)p(c)(T (n)cb T

(m)
ad − T (m)cb T

(n)
ad ) = 0.

(11a)
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Similar to the discussion for the Yangian [2], equation (11a) can be rewritten in the
following equivalent form:

[T (n)ab , T
(m)
cd } = (−1)1+p(a)p(c)+p(a)p(b)+p(b)p(c)

min(n,m)−1∑
i=0

(T
(i)
cb T

(m+n−i−1)
ad − T (m+n−i−1)

cb T
(i)
ad ).

(11b)

In particular, for the case ofa = c, b = d in the above equation, we have

[T (n)ab , T
(m)
ab } = (−1)1+p(a)p(a)

min(n,m)−1∑
i=0

[T (i)ab , T
(m+n−i−1)
ab ] (12)

this shows thatT (n)ab , with a 6= b and differentn (n > 1) will neither commute nor
anticommute.

From equation (11b), we know that the following property holds

[T (n)ab , T
(m)
cd } = [T (m)ab , T

(n)
cd } (n,m > 1). (13)

Here we note that in the non-graded case, equation (13) will give the relation

[T (n)ab , T
(m)
cd ] = 0 (n,m > 1). (14)

For the case of superalgebragl(1|1), a = 1, 2 andP takes the form

P12 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1


T (u) is a 2× 2 matrix. Because of relation (10), we can chooseT (0) to be of the form

T (0) =
[

1 0
0 1

]
(15)

up to a constant factor. Here we should stress that (15) is only a choice, which is different
from the non-graded case in that there it is the result of Schur’s lemma [12]. From
equation (9), we see that equation (15) is equivalent to imposing the asymptotic condition
T (u) → 1 for u → ∞. With equations (10), (11) and (15), we obtain the following
relations: 

[T (n)3 , T
(1)

12 ] = [T (1)3 , T
(n)

12 ] = 0

[T (n)3 , T
(1)

21 ] = [T (1)3 , T
(n)

21 ] = 0

[T (n)0 , T
(1)

12 ] = [T (1)0 , T
(n)

12 ] = −2T (n)12 (for any n)

[T (n)0 , T
(1)

21 ] = [T (1)0 , T
(n)

21 ] = 2T (n)21

{T (n)12 , T
(1)

21 } = −T (n)3

(16)


[T (2)0 , T

(2)
3 ] + 2(T (1)21 T

(2)
12 − T (2)21 T

(1)
12 ) = 0

[T (n)3 , T
(2)

12 ] − T (1)12 T
(n)

3 + T (n)12 T
(1)

3 = 0 (n > 1)

[T (n)3 , T
(2)

21 ] + T (1)21 T
(n)

3 − T (n)21 T
(1)

3 = 0 (n > 1)

(17)

and 
−T (n+1)

12 = (2)−1{[T (n)0 , T
(2)

12 ] + T (n)12 T
(1)

0 − T (1)12 T
(n)

0 }
T
(n+1)

21 = (2)−1{[T (n)0 , T
(2)

21 ] + T (1)21 T
(n)

0 − T (n)21 T
(1)

0 }
T
(n+1)

3 = −{T (n)12 , T
(2)

21 } + T (1)22 T
(n)

11 − T (n)22 T
(1)

11 (n > 2)

(18)
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where

T
(n)

3 = T (n)22 − T (n)11 T
(n)

0 = T (n)22 + T (n)11 . (19)

From the iterative relation (18), we see that onlyT (1)ab , T (2)ab are basic operators. Now,
if we make the following correspondence

T
(1)

3 = −γ0z0 T
(2)

3 = −γ1z1

T
(1)

12 = α0e0 T
(2)

12 = α1e1

T
(1)

21 = β0f0 T
(2)

21 = β1f1

T
(1)

0 = −2h0 T
(2)

0 = δh1

(20)

and take the choice

α0β0 = γ0 α0β1 = α1β0 = γ1 α0δ = −2α1 (21)

then from equations (16)–(18) we obtain following algebraic relations{
e2

0 = f 2
0 = 0, [h0, e0] = e0 [h0, f0] = −f0

[z0, e0] = [z0, f0] = [h0, z0] = 0 {e0, f0} = z0
(22)

and 

[z1, e0] = [z1, f0] = [z1, z0] = [z1, h0] = 0

[f1, z0] = 0 [f1, h0] = f1

{f1, e0} = z1 {f1, f0} = 0

{e1, e0} = 0 {e1, f0} = z1

[e1, z0] = 0 [e1, h0] = −e1

[h1, z0] = [h1, h0] = 0

[h1, e0] = e1 [h1, f0] = −f1.

(23)

Equation (22) is just the defining relation of the Lie superalgebragl(1|1). Taking the
correspondence

z0 −→ N +M e0 −→ x f0 −→ y h0 −→ N (24)

equation (22) will give the same result as that of Liao and Song [11] in the limitq −→ 1.
Equation (23) shows thate1, f1, h1, z1 form a representation of equation (22).ei, fi, hi, zi
(i = 0, 1) also satisfy Serre relations:

[z1, {e1, f1}] = C0z0(f0e1− f1e0)

2{e1, [h1, e1]} + C0[e0, e1] + 2C1[h1, e1]e0 = 0

2{f1, [h1, f1]} + C0[f0, f1] + 2C1[h1, f1]f0 = 0

{e1, [z1, e1]} + C0e1e0z0 = 0

{f1, [z1, f1]} + C0f1f0z0 = 0

[e1, {e1, f1}] + [z1, [h1, e1]] = C1([e1, h1]z0+ z1e1)+ C0e0(f0e1− f1e0)

[f1, {e1, f1}] − [z1, [h1, f1]] = C1([f1, h1]z0− z1f1)+ C0f0(f0e1− f1e0)

[h1, {e1, f1}] − C1(f0[h1, e1] + [h1, f1]e0)− C0(f0e1− f1e0) = 0

(25)

where

C0 = γ0/α1β1 C1 = γ1/α1β1.
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The operators{ei, fi, hi, zi}i=0,1 and relations (22), (23) and (25) constitute an infinite-
dimensional algebra called super-Yangian of the Lie superalgebragl(1|1) and denoted by
Y (gl(1|1)). Y (gl(1|1)) is a Hopf algebra with the comultiplication1, co-unitε and antipode
S defined, respectively, by

1(T (u)ab) =
∑
c

T (u)ac ⊗ T (u)cb

ε(T (u)) = 1

S(T (u)) = T (u)−1.

(26a)

If writing the Hopf structure in terms of operators{ei, fi, hi, zi}i=0,1, we obtain the following
forms:

1(X) = 1⊗X +X ⊗ 1

1(e1) = 1⊗ e1+ e1⊗ 1− C0

C1
(h0⊗ e0+ e0⊗ h0)+ C0γ0

2C1
(z0⊗ e0− e0⊗ z0)

1(f1) = 1⊗ f1+ f1⊗ 1− C0

C1
(h0⊗ f0+ f0⊗ h0)+ C0γ0

2C1
(−z0⊗ f0+ f0⊗ z0)

1(z1) = 1⊗ z1+ z1⊗ 1+ C0

C1
(e0⊗ f0− f0⊗ e0)− C0

C1
(z0⊗ h0+ h0⊗ z0)

1(h1) = 1⊗ h1+ h1⊗ 1− C0γ0

2C1
(f0⊗ e0+ e0⊗ f0)− C0

C1
h0⊗ h0− C0γ

2
0

4C1
z0⊗ z0

S(X) = −X
S(e1) = −e1− C0

C1
(h0e0+ e0h0)

S(f1) = −f1− C0

C1
(h0f0+ f0h0)

S(z1) = −z1− C0

C1
(f0e0− e0f0+ 2z0h0)

S(h1) = −h1− C0γ0

2C1
(f0e0+ e0f0)− C0γ

2
0

4C1
z0z0− C0

C1
h0h0

ε(1) = 1 ε(X) = ε(Y ) = 0

(26b)

whereX = e0, f0, z0, h0, Y = e1, f1, z1, h1.
Now we introduce a set of bosonic oscillatorsbi, b

†
i and a set of fermionic oscillators

ai, a
†
i satisfying


{ai, a†j } = [bi, b

†
j ] = δij

{ai, aj } = {a†i , a†j } = [bi, bj ] = [b†i , b
†
j ] = 0

[ai, bj ] = [a†i , b
†
j ] = [a†i , bj ] = [ai, b

†
j ] = 0.

(27)
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Identifying

e0 =
∑
i

b
†
i ai f0 =

∑
i a
†
i bi

z0 =
∑
i

(a
†
i ai + b†i bi) h0 =

∑
i b
†
i bi

e1 =
∑
i,j

Aij b
†
i aj +

∑
i,j

Bij b
†
i ai(a

†
j aj + b†j bj )

f1 =
∑
i,j

Aij a
†
i bj −

∑
i,j

Bij a
†
i bi(a

†
j aj + b†j bj )

z1 =
∑
i,j

Aij (a
†
i aj + b†i bj )

h1 = 1

2

∑
i,j

Aij (−a†i aj + b†i bj )+
∑
i,j

Bij b
†
i aia

†
j bj

(28)

whereAij , Bij are parameters andBij+Bji = 0. We can prove that equations (28) reproduce
the commutation relations given in equations (22) and (23). Substituting equations (28) into
Serre relations (25), there are some constraints onAij , Bij and they will be related to
parametersC0, C1.

In this paper, we only discuss the super-Yangian of the Lie superalgebragl(1|1) and its
oscillator realization. The question we should answer is how to generalize the discussion to
the case of superalgebragl(m|n) and other superalgebras. However, this is connected with
physical problems, i.e. whether integrable models exist withR matrix associated with Lie
superalgebras. As a first step, we wish to find a model with the super-Yangian symmetry we
have discussed. This problem asks for a further study of super-Yangian and its representation
theory.

From the above discussion, we see that (super-)Yangian is related to the (graded) RTT
relation. Actually, there are dual relations to the (graded) RTT relation, their corresponding
algebras are not contained in the (super-)Yangian. Yangian double considers all algebraic
information contained in RTT relation and its dual relations. The Yangian double for
simple Lie algebras has recently become an interesting research object [13, 14]. Naturally,
the super-Yangian double and the related problems also need to be studied. Work in this
respect is under investigation.
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